首页 > Computer > Chromium > Chrome源码剖析
2011
05-06

Chrome源码剖析

开源是口好东西,它让这个充斥着大量工业垃圾代码和教材玩具代码的行业,多了一些艺术气息和美的潜质。它使得每个人,无论你来自米国纽约还是中国铁岭,都有机会站在巨人的肩膀上,如果不能,至少也可以抱一把大腿。。。

现在我就是来抱大腿的,这条粗腿隶属于Chrome(开源项目名称其实是Chromium,本来Chrome这个名字就够晦涩了,没想到它的本名还更上一层楼…),Google那充满狼子野心的浏览器。每一个含着金勺子出生的人都免不了被仰慕并被唾骂,Chrome也不例外。关于Chrome的优劣好坏讨论的太多了,基本已经被嚼成甘蔗渣了,没有人愿意再多张一口了。俗话说,内行看门道外行看热闹,大部分所谓的外行,是通过使用的真实感受来评定优劣的,这无疑是最好的方式。但偏偏还是有自诩的内行,喜欢说内行话办外行事,一看到Chrome用到多进程就说垃圾废物肯定低能。拜托,大家都是搞技术的,你知道多进程的缺点,Google也知道,他们不是政客,除了搞个噱头扯个蛋就一无所知了,人家也是有脸有皮的,写一坨屎一样的开源代码放出来遭世人耻笑难道会很开心?所谓技术的优劣,是不能一概而论的,同样的技术在不同场合不同环境不同代码实现下,效果是有所不同的。既然Chrome用了很多看上去不是很美的技术,我们是不是也需要了解一下它为什么要用,怎么用的,然后再开口说话?(恕不邀请,请自行对号入座…)。。。

人说是骡子是马拉出来遛遛,Google已经把Chrome这匹驴子拉到了世人面前,大家可以随意的遛。我们一直自诩是搞科学的,就是在努力和所谓的艺术家拉开,人搞超女评委的,可以随意塞着屁眼用嘴放屁,楞把李天王说是李天后,你也只能说他是艺术品位独特。你要搞科学就不行,说的不对,轻的叫无知,重的叫学术欺诈,结果一片惨淡。所以,既然代码都有了,再说话,就只能当点心注点意了,先看,再说。。。

我已经开始遛Chrome这头驴了,确切一点,是头壮硕的肥驴,项目总大小接近2G。这样的庞然大物要从头到脚每个毛孔的大量一遍,那估计不咽气也要吐血的,咱又不是做Code review,不需要如此拼命。每一个好的开源项目,都像是一个美女,这世界没有十全十美的美女,自然也不会有样样杰出的开源项目。每个美女都有那么一两点让你最心动不已或者倍感神秘的,你会把大部分的注意力都放在上面细细品味,看开源,也是一样。Chrome对我来说,有吸引力的地方在于(排名分先后…):

1. 它是如何利用多进程(其实也会有多线程一起)做并发的,又是如何解决多进程间的一些问题的,比如进程间通信,进程的开销;
2. 做为一个后来者,它的扩展能力如何,如何去权衡对原有插件的兼容,提供怎么样的一个插件模型;
3. 它的整体框架是怎样,有没有很NB的架构思想;
4. 它如何实现跨平台的UI控件系统;
5. 传说中的V8,为啥那么快。

但Chrome是一个跨平台的浏览器,其Linux和Mac版本正在开发过程中,所以我把所有的眼光都放在了windows版本中,所有的代码剖析都是基于windows版本的。话说,我本是浏览器新手、win api白痴以及并发处理的火星人,为了我的好奇投身到这个溜驴的行业中来,难免有学的不到位看的走眼的时候,各位看官手下超生,有错误请指正,实在看不下去,回家自己牵着遛吧。。。

扯淡实在是个体力活,所以后面我会少扯淡多说问题。。。

关于Chrome的源码下载和环境配置,大家看这里(windows版本),只想强调一点,一定要严格按照说明来配置环境,特别是vs2005的补丁和windows SDK的安装,否则肯定是编译不过的。。。

最后,写这部分唯一不是废话的内容,请记住以下这幅图,这是Chrome最精华的一个缩影,如果你还有空,一定要去这里进行阅读,其中重中之重是这一篇。。。

图1 Chrome的线程和进程模型

【一】 Chrome的多线程模型

0. Chrome的并发模型

如果你仔细看了前面的图,对Chrome的线程和进程框架应该有了个基本的了解。Chrome有一个主进程,称为Browser进程,它是老大,管理Chrome大部分的日常事务;其次,会有很多Renderer进程,它们圈地而治,各管理一组站点的显示和通信(Chrome在宣传中一直宣称一个tab对应一个进程,其实是很不确切的…),它们彼此互不搭理,只和老大说话,由老大负责权衡各方利益。它们和老大说话的渠道,称做IPC(Inter-Process Communication),这是Google搭的一套进程间通信的机制,基本的实现后面自会分解。。。

Chrome的进程模型
Google在宣传的时候一直都说,Chrome是one tab one process的模式,其实,这只是为了宣传起来方便如是说而已,基本等同广告,实际疗效,还要从代码中来看。实际上,Chrome支持的进程模型远比宣传丰富,你可以参考一下这里 ,简单的说,Chrome支持以下几种进程模型:

  1. Process-per-site-instance:就是你打开一个网站,然后从这个网站链开的一系列网站都属于一个进程。这是Chrome的默认模式。
  2. Process-per-site:同域名范畴的网站放在一个进程,比如www.google.com和www.google.com/bookmarks就属于一个域名内(google有自己的判定机制),不论有没有互相打开的关系,都算作是一个进程中。用命令行–process-per-site开启。
  3. Process-per-tab:这个简单,一个tab一个process,不论各个tab的站点有无联系,就和宣传的那样。用–process-per-tab开启。
  4. Single Process:这个很熟悉了吧,传统浏览器的模式,没有多进程只有多线程,用–single-process开启。

关于各种模式的优缺点,官方有官方的说法,大家自己也会有自己的评述。不论如何,至少可以说明,Google不是由于白痴而采取多进程的策略,而是实验出来的效果。。。
大家可以用Shift+Esc观察各模式下进程状况,至少我是观察失败了(每种都和默认的一样…),原因待跟踪。。。

不论是Browser进程还是Renderer进程,都不只是光杆司令,它们都有一系列的线程为自己打理各种业务。对于Renderer进程,它们通常有两个线程,一个是Main thread,它负责与老大进行联系,有一些幕后黑手的意思;另一个是Render thread,它们负责页面的渲染和交互,一看就知道是这个帮派的门脸级人物。相比之下,Browser进程既然是老大,小弟自然要多一些,除了大脑般的Main thread,和负责与各Renderer帮派通信的IO thread,其实还包括负责管文件的file thread,负责管数据库的db thread等等(一个更详细的列表,参见这里),它们各尽其责,齐心协力为老大打拼。它们和各Renderer进程的之间的关系不一样,同一个进程内的线程,往往需要很多的协同工作,这一坨线程间的并发管理,是Chrome最出彩的地方之一了。。。

闲话并发
单进程单线程的编程是最惬意的事情,所看即所得,一维的思考即可。但程序员的世界总是没有那么美好,在很多的场合,我们都需要有多线程、多进程、多机器携起手来一齐上阵共同完成某项任务,统称:并发(非官方版定义…)。在我看来,需要并发的场合主要是要两类:

  1. 为了更好的用户体验。有的事情处理起来太慢,比如数据库读写、远程通信、复杂计算等等,如果在一个线程一个进程里面来做,往往会影响用户感受,因此需要另开一个线程或进程转到后台进行处理。它之所以能够生效,仰仗的是单CPU的分时机制,或者是多CPU协同工作。在单CPU的条件下,两个任务分成两拨完成的总时间,是大于两个任务轮流完成的,但是由于彼此交错,更人的感觉更为的自然一些。
  2. 为了加速完成某项工作。大名鼎鼎的Map/Reduce,做的就是这样的事情,它将一个大的任务,拆分成若干个小的任务,分配个若干个进程去完成,各自收工后,在汇集在一起,更快的得到最后的结果。为了达到这个目的,只有在多CPU的情形下才有可能,在单CPU的场合(单机单CPU…),是无法实现的。

在第二种场合下,我们会自然而然的关注数据的分离,从而很好的利用上多CPU的能力;而在第一种场合,我们习惯了单CPU的模式,往往不注重数据与行为的对应关系,导致在多CPU的场景下,性能不升反降。。。

1. Chrome的线程模型

仔细回忆一下我们大部分时候是怎么来用线程的,在我足够贫瘠的多线程经历中,往往都是这样用的:起一个线程,传入一个特定的入口函数,看一下这个函数是否是有副作用的(Side Effect),如果有,并且还会涉及到多线程的数据访问,仔细排查,在可疑地点上锁伺候。。。

Chrome的线程模型走的是另一个路子,即,极力规避锁的存在。换更精确的描述方式来说,Chrome的线程模型,将锁限制了极小的范围内(仅仅在将Task放入消息队列的时候才存在…),并且使得上层完全不需要关心锁的问题(当然,前提是遵循它的编程模型,将函数用Task封装并发送到合适的线程去执行…),大大简化了开发的逻辑。。。

不过,从实现来说,Chrome的线程模型并没有什么神秘的地方(美女嘛,都是穿衣服比不穿衣服更有盼头…),它用到了消息循环的手段。每一个Chrome的线程,入口函数都差不多,都是启动一个消息循环(参见MessagePump类),等待并执行任务。而其中,唯一的差别在于,根据线程处理事务类别的不同,所起的消息循环有所不同。比如处理进程间通信的线程(注意,在Chrome中,这类线程都叫做IO线程,估计是当初设计的时候谁的脑门子拍错了…)启用的是MessagePumpForIO类,处理UI的线程用的是MessagePumpForUI类,一般的线程用到的是MessagePumpDefault类(只讨论windows, windows, windows…)。不同的消息循环类,主要差异有两个,一是消息循环中需要处理什么样的消息和任务,第二个是循环流程(比如是死循环还是阻塞在某信号量上…)。下图是一个完整版的Chrome消息循环图,包含处理Windows的消息,处理各种Task(Task是什么,稍后揭晓,敬请期待…),处理各个信号量观察者(Watcher),然后阻塞在某个信号量上等待唤醒。。。

图2 Chrome的消息循环

当然,不是每一个消息循环类都需要跑那么一大圈的,有些线程,它不会涉及到那么多的事情和逻辑,白白浪费体力和时间,实在是不可饶恕的。因此,在实现中,不同的MessagePump类,实现是有所不同的,详见下表:

MessagePumpDefault
MessagePumpForIO
MessagePumpForUI

是否需要处理系统消息


是否需要处理Task


是否需要处理Watcher


是否阻塞在信号量上


2. Chrome中的Task

从上面的表不难看出,不论是哪一种消息循环,必须处理的,就是Task(暂且遗忘掉系统消息的处理和Watcher,以后,我们会缅怀它们的…)。刨去其它东西的干扰,只留下Task的话,我们可以这样认为:Chrome中的线程从实现层面来看没有任何区别,它的区别只存在于职责层面,不同职责的线程,会处理不同的Task。最后,在铺天盖地西红柿来临之前,我说一下啥是Task。。。

简单的看,Task就是一个类,一个包含了void Run()抽象方法的类(参见Task类…)。一个真实的任务,可以派生Task类,并实现其Run方法。每个MessagePump类中,会有一个MessagePump::Delegate的类的对象(MessagePump::Delegate的一个实现,请参见MessageLoop类…),在这个对象中,会维护若干个Task的队列。当你期望,你的一个逻辑在某个线程内执行的时候,你可以派生一个Task,把你的逻辑封装在Run方法中,然后实例一个对象,调用期望线程中的PostTask方法,将该Task对象放入到其Task队列中去,等待执行。我知道很多人已经抄起了板砖,因为这种手法实在是太常见了,就不是一个简单的依赖倒置,在线程池,Undo\Redo等模块的实现中,用的太多了。。。

但,我想说的是,虽说谁家过年都是吃顿饺子,这饺子好不好吃还是得看手艺,不能一概而论。在Chrome中,线程模型是统一且唯一的,这就相当于有了一套标准,它需要满足在各个线程上执行的几十上百种任务的需求,因此,必须在灵活行和易用性上有良好的表现,这就是设计标准的难度。为了满足这些需求,Chrome在底层库上做了足够的功夫:

  1. 它提供了一大套的模板封装(参见task.h),可以将Task摆脱继承结构、函数名、函数参数等限制(就是基于模板的伪function实现,想要更深入了解,建议直接看鼻祖《Modern C++》和它的Loki库…);
  2. 同时派生出CancelableTask、ReleaseTask、DeleteTask等子类,提供更为良好的默认实现;
  3. 在消息循环中,按逻辑的不同,将Task又分成即时处理的Task、延时处理的Task、Idle时处理的Task,满足不同场景的需求;
  4. Task派生自tracked_objects::Tracked,Tracked是为了实现多线程环境下的日志记录、统计等功能,使得Task天生就有良好的可调试性和可统计性;

这一套七荤八素的都搭建完,这才算是一个完整的Task模型,由此可知,这饺子,做的还是很费功夫的。。。

3. Chrome的多线程模型

工欲善其事,必先利其器。Chrome之所以费了老鼻子劲去磨底层框架这把刀,就是为了面对多线程这坨怪兽的时候杀的更顺畅一些。在Chrome的多线程模型下,加锁这个事情只发生在将Task放入某线程的任务队列中,其他对任何数据的操作都不需要加锁。当然,天下没有免费的午餐,为了合理传递Task,你需要了解每一个数据对象所管辖的线程,不过这个事情,与纷繁的加锁相比,真是小儿科了不知道多少倍。。。

图3 Task的执行模型

如果你熟悉设计模式,你会发现这是一个Command模式,将创建于执行的环境相分离,在一个线程中创建行为,在另一个线程中执行行为。Command模式的优点在于,将实现操作与构造操作解耦,这就避免了锁的问题,使得多线程与单线程编程模型统一起来,其次,Command还有一个优点,就是有利于命令的组合和扩展,在Chrome中,它有效统一了同步和异步处理的逻辑。。。

Command模式
Command模式,是一种看上去很酷的模式,传统的面向对象编程,我们封装的往往都是数据,在Command模式下,我们希望封装的是行为。这件事在函数式编程中很正常,封装一个函数作为参数,传来传去,稀疏平常的事儿;但在面向对象的编程中,我们需要通过继承、模板、函数指针等手法,才能将其实现。。。
应用Command模式,我们是期望这个行为能到一个不同于它出生的环境中去执行,简而言之,这是一种想生不想养的行为。我们做Undo/Redo的时候,会把在任一一个环境中创建的Command,放到一个队列环境中去,供统一的调度;在Chrome中,也是如此,我们在一个线程环境中创建了Task,却把它放到别的线程中去执行,这种寄居蟹似的生活方式,在很多场合都是有用武之地的。。。

在一般的多线程模型中,我们需要分清楚啥是同步啥是异步,在同步模式下,一切看上去和单线程没啥区别,但同时也丧失了多线程的优势(沦落成为多线程串行…)。而如果采用异步的模式,那写起来就麻烦多了,你需要注册回调,小心管理对象的生命周期,程序写出来是嗷嗷恶心。在Chrome的多线程模型下,同步和异步的编程模型区别就不复存在了,如果是这样一个场景:A线程需要B线程做一些事情,然后回到A线程继续做一些事情;在Chrome下你可以这样来做:生成一个Task,放到B线程的队列中,在该Task的Run方法最后,会生成另一个Task,这个Task会放回到A的线程队列,由A来执行。如此一来,同步异步,天下一统,都是Task传来传去,想不会,都难了。。。

图4 Chrome的一种异步执行的解决方案

4. Chrome多线程模型的优缺点

一直在说Chrome在规避锁的问题,那到底锁是哪里不好,犯了何等滔天罪责,落得如此人见人嫌恨不得先杀而后快的境地。《代码之美》的第二十四章“美丽的并发”中,Haskell设计人之一的Simon Peyton Jones总结了一下用锁的困难之处,我罚抄一遍,如下:

  1. 锁少加了,导致两个线程同时修改一个变量;
  2. 锁多加了,轻则妨碍并发,重则导致死锁;
  3. 锁加错了,由于锁和需要锁的数据之间的联系,只存在于程序员的大脑中,这种事情太容易发生了;
  4. 加锁的顺序错了,维护锁的顺序是一件困难而又容易出错的问题;
  5. 错误恢复;
  6. 忘记唤醒和错误的重试;
  7. 而最根本的缺陷,是锁和条件变量不支持模块化的编程。比如一个转账业务中,A账户扣了100元钱,B账户增加了100元,即使这两个动作单独用锁保护维持其正确性,你也不能将两个操作简单的串在一起完成一个转账操作,你必须让它们的锁都暴露出来,重新设计一番。好好的两个函数,愣是不能组在一起用,这就是锁的最大悲哀;

通过这些缺点的描述,也就可以明白Chrome多线程模型的优点。它解决了锁的最根本缺陷,即,支持模块化的编程,你只需要维护对象和线程之间的职能关系即可,这个摊子,比之锁的那个烂摊子,要简化了太多。对于程序员来说,负担一瞬间从泰山降成了鸿毛。。。

而Chrome多线程模型的一个主要难点,在于线程与数据关系的设计上,你需要良好的划分各个线程的职责,如果有一个线程所管辖的数据,几乎占据了大半部分的Task,那么它就会从多线程沦为单线程,Task队列的锁也将成为一个大大的瓶颈。。。

设计者的职责
一个底层结构设计是否成功,这个设计者是否称职,我一直觉得是有一个很简单的衡量标准的。你不需要看这个设计人用了多少NB的技术,你只需要关心,他的设计,是否给其他开发人员带来了困难。一个NB的设计,是将所有困难都集中在底层搞定,把其他开发人员换成白痴都可以工作的那种;一个SB的设计,是自己弄了半天,只是为了给其他开发人员一个长达250条的注意事项,然后很NB的说,你们按照这个手册去开发,就不会有问题了。。。

从根本上来说,Chrome的线程模型解决的是并发中的用户体验问题而不是联合工作的问题(参见我前面喷的“闲话并发”),它不是和Map/Reduce那样将关注点放在数据和执行步骤的拆分上,而是放在线程和数据的对应关系上,这是和浏览器的工作环境相匹配的。设计总是和所处的环境相互依赖的,毕竟,在客户端,不会和服务器一样,存在超规模的并发处理任务,而只是需要尽可能的改善用户体验,从这个角度来说,Chrome的多线程模型,至少看上去很美。。。

【二】Chrome的进程间通信

1. Chrome进程通信的基本模式

进程间通信,叫做IPC(Inter-Process Communication),在Chrome不多的文档中,有一篇就是介绍这个的,在这里。Chrome最主要有三类进程,一类是Browser主进程,我们一直尊称它老人家为老大;还有一类是各个Render进程,前面也提过了;另外还有一类一直没说过,是Plugin进程,每一个插件,在Chrome中都是以进程的形式呈现,等到后面说插件的时候再提罢了。Render进程和Plugin进程都与老大保持进程间的通信,Render进程与Plugin进程之间也有彼此联系的通路,唯独是多个Render进程或多个Plugin进程直接,没有互相联系的途径,全靠老大协调。。。

进程与进程间通信,需要仰仗操作系统的特性,能玩的花着实不多,在Chrome中,用到的就是有名管道(Named Pipe),只不过,它用一个IPC::Channel类,封装了具体的实现细节。Channel可以有两种工作模式,一种是Client,一种是Server,Server和Client分属两个进程,维系一个共同的管道名,Server负责创建该管道,Client会尝试连接该管道,然后双发往各自管道缓冲区中读写数据(在Chrome中,用的是二进制流,异步IO…),完成通信。。。

管道名字的协商
在Socket中,我们会事先约定好通信的端口,如果不按照这个端口进行访问,走错了门,会被直接乱棍打出门去的。与之类似,有名管道期望在两个进程间游走,就需要拿一个两个进程都能接受的进门暗号,这个就是有名管道的名字。在Chrome中(windows下…),有名管道的名字格式都是:\\.\pipe\chrome.ID。其中的ID,自然是要求独一无二,比如:进程ID.实例地址.随机数。通常,这个ID是由一个Process生成(往往是Browser Process),然后在创建另一个进程的时候,作为命令行参数传进去,从而完成名字的协商。。。
如果不了解并期待了解有关Windows下有名管道和信号量的知识,建议去看一些专业的书籍,比如圣经级别的《Windows核心编程》和《深入解析Windows操作系统》,当然也可以去查看SDK,你需要了解的API可能包括:CreateNamedPipe, CreateFile, ConnectNamedPipe, WaitForMultipleObjects, WaitForSingleObject, SetEvent, 等等。。。

Channel中,有三个比较关键的角色,一个是Message::Sender,一个是Channel::Listener,最后一个是MessageLoopForIO::Watcher。Channel本身派生自Sender和Watcher,身兼两角,而Listener是一个抽象类,具体由Channel的使用者来实现。顾名思义,Sender就是发送消息的接口,Listener就是处理接收到消息的具体实现,但这个Watcher是啥?如果你觉得Watcher这东西看上去很眼熟的话,我会激动的热泪盈眶的,没错,在前面(第一部分第一小节…)说消息循环的时候,从那个表中可以看到,IO线程(记住,在Chrome中,IO指的是网络IO,*_*)的循环会处理注册了的Watcher。其实Watcher很简单,可以视为一个信号量和一个带有OnObjectSignaled方法对象的对,当消息循环检测到信号量开启,它就会调用相应的OnObjectSignaled方法。。。

图5 Chrome的IPC处理流程图

一图解千语,如上图所示,整个Chrome最核心的IPC流程都在图上了,期间,刨去了一些错误处理等逻辑,如果想看原汁原味的,可以自查Channel类的实现。当有消息被Send到一个发送进程的Channel的时候,Channel会把它放在发送消息队列中,如果此时还正在发送以前的消息(发送端被阻塞…),则看一下阻塞是否解除(用一个等待0秒的信号量等待函数…),然后将消息队列中的内容序列化并写道管道中去。操作系统会维护异步模式下管道的这一组信号量,当消息从发送进程缓冲区写到接收进程的缓冲区后,会激活接收端的信号量。当接收进程的消息循环,循到了检查Watcher这一步,并发现有信号量激活了,就会调用该Watcher相应的OnObjectSignaled方法,通知接受进程的Channel,有消息来了!Channel会尝试从管道中收字节,组消息,并调用Listener来解析该消息。。。

从上面的描述不难看出,Chrome的进程通信,最核心的特点,就是利用消息循环来检查信号量,而不是直接让管道阻塞在某信号量上。这样就与其多线程模型紧密联系在了一起,用一种统一的模式来解决问题。并且,由于是消息循环统一检查,线程不会随便就被阻塞了,可以更好的处理各种其他工作,从理论上讲,这是通过增加CPU工作时间,来换取更好的体验,颇有资本家的派头。。。

温柔的消息循环
其实,Chrome的很多消息循环,也不是都那么霸道,也是会被阻塞在某些信号量或者某种场景上的,毕竟客户端不是它家的服务器,CPU不能被全部归在它家名下。。。
比如IO线程,当没有消息来到,又没有信号量被激活的时候,就会被阻塞,具体实现可以去看MessagePumpForIO的WaitForWork方法。。。
不过这种阻塞是集中式的,可随时修改策略的,比起Channel直接阻塞在信号量上,停工的时间更短。。。

2. 进程间的跨线程通信和同步通信

在Chrome中,任何底层的数据都是线程非安全的,Channel不是太上老君(抑或中国足球?…),它也没有例外。在每一个进程中,只能有一个线程来负责操作Channel,这个线程叫做IO线程(名不符实真是一件悲凉的事情…)。其它线程要是企图越俎代庖,是会出大乱子的。。。

但是有时候(其实是大部分时候…),我们需要从非IO线程与别的进程相通信,这该如何是好?如果,你有看过我前面写的线程模型,你一定可以想到,做法很简单,先将对Channel的操作放到Task中,将此Task放到IO线程队列里,让IO线程来处理即可。当然,由于这种事情发生的太频繁,每次都人肉做一次颇为繁琐,于是有一个代理类,叫做ChannelProxy,来帮助你完成这一切。。。

从接口上看,ChannelProxy的接口和Channel没有大的区别(否则就不叫Proxy了…),你可以像用Channel一样,用ChannelProxy来Send你的消息,ChannelProxy会辛勤的帮你完成剩余的封装Task等工作。不仅如此,ChannelProxy还青出于蓝胜于蓝,在这个层面上做了更多的事情,比如:发送同步消息。。。

不过能发送同步消息的类不是ChannelProxy,而是它的子类,SyncChannel。在Channel那里,所有的消息都是异步的(在Windows中,也叫Overlapped…),其本身也不支持同步逻辑。为了实现同步,SyncChannel并没有另造轮子,而只是在Channel的层面上加了一个等待操作。当ChannelProxy的Send操作返回后,SyncChannel会把自己阻塞在一组信号量上,等待回包,直到永远或超时。从外表上看同步和异步没有什么区别,但在使用上还是要小心,在UI线程中使用同步消息,是容易被发指的。。。

3. Chrome中的IPC消息格式

说了半天,还有一个大头没有提过,那就是消息包。如果说,多线程模式下,对数据的访问开销来自于锁,那么在多进程模式下,大部分的额外开销都来自于进程间的消息拆装和传递。不论怎么样的模式,只要进程不同,消息的打包,序列化,反序列化,组包,都是不可避免的工作。。。

在Chrome中,IPC之间的通信消息,都是派生自IPC::Message类的。对于消息而言,序列化和反序列化是必须要支持的,Message的基类Pickle,就是干这个活的。Pickle提供了一组的接口,可以接受int,char,等等各种数据的输入,但是在Pickle内部,所有的一切都没有区别,都转化成了一坨二进制流。这个二进制流是32位齐位的,比如你只传了一个bool,也是最少占32位的,同时,Pickle的流是有自增逻辑的(就是说它会先开一个Buffer,如果满了的话,会加倍这个Buffer…),使其可以无限扩展。Pickle本身不维护任何二进制流逻辑上的信息,这个任务交到了上级处理(后面会有说到…),但Pickle会为二进制流添加一个头信息,这个里面会存放流的长度,Message在继承Pickle的时候,扩展了这个头的定义,完整的消息格式如下:

图6 Chrome的IPC消息格式

其中,黄色部分是包头,定长96个bit,绿色部分是包体,二进制流,由payload_size指明长度。从大小上看这个包是很精简的了,除了routing位在消息不为路由消息的时候会有所浪费。消息本身在有名管道中是按照二进制流进行传输的(有名管道可以传输两种类型的字符流,分别是二进制流和消息流…),因此由payload_size + 96bits,就可以确定是否收了一个完整的包。。。

从逻辑上来看,IPC消息分成两类,一类是路由消息(routed message),还有一类是控制消息(control message)。路由消息是私密的有目的地的,系统会依照路由信息将消息安全的传递到目的地,不容它人窥视;控制消息就是一个广播消息,谁想听等能够听得到。。。

消息的序列化
前不久读了Google Protocol Buffers的源码,是用在服务器端,用做内部机器通信协议的标准、代码生成工具和框架。它主要的思想是揉合了key/value的内容到二进制中,帮助生成更为灵活可靠的二进制协议。。。
在Chrome中,没有使用这套东西,而是用到了纯二进制流作为消息序列化的方式。我想这是由于应用场景不同使然。在服务端,我们更关心协议的稳定性,可扩展性,并且,涉及到的协议种类很多。但在一个Chrome中,消息的格式很统一,这方面没有扩展性和灵活性的需求,而在序列化上,虽然key/value的方式很好很强大,但是在Chrome中需要的不是灵活性而是精简性,因此宁可不用Protocol Buffers造好的轮子,而是另立炉灶,花了好一把力气提供了一套纯二进制的消息机制。。。

4. 定义IPC消息

如果你写过MFC程序,对MFC那里面一大堆宏有所忌惮的话,那么很不幸,在Chrome中的IPC消息定义中,你需要再吃一点苦头了,甚至,更苦大仇深一些;如果你曾经领教过用模板的特化偏特化做Traits、用模板做函数重载、用编译期的Tuple做变参数支持,之类机制的种种麻烦的话,那么,同样很遗憾,在Chrome中,你需要再感受一次。。。

不过,先让我们忘记宏和模板,看人肉一个消息,到底需要哪些操作。一个标准的IPC消息定义应该是类似于这样的:

class SomeMessage 

    : public IPC::Message

{

public:

    enum { ID = …; }

    SomeMessage(SomeType & data) 

        : IPC::Message(MSG_ROUTING_CONTROL, ID, ToString(data)) 

    {…}

    …

};

大概意思是这样的,你需要从Message(或者其他子类)派生出一个子类,该子类有一个独一无二的ID值,该子类接受一个参数,你需要对这个参数进行序列化。两个麻烦的地方看的很清楚,如果生成独一无二的ID值?如何更方便的对任何参数可以自动的序列化?。。。

在Chrome中,解决这两个问题的答案,就是宏 + 模板。Chrome为每个消息安排了一种ID规格,用一个16bits的值来表示,高4位标识一个Channel,低12位标识一个消息的子id,也就是说,最多可以有16种Channel存在不同的进程之间,每一种Channel上可以定义4k的消息。目前,Chrome已经用掉了8种Channel(如果A、B进程需要双向通信,在Chrome中,这是两种不同的Channel,需要定义不同的消息,也就是说,一种双向的进程通信关系,需要耗费两个Channel种类…),他们已经觉得,16bits的ID格式不够用了,在将来的某一天,估计就被扩展成了32bits的。书归正传,Chrome是这么来定义消息ID的,用一个枚举类,让它从高到低往下走,就像这样:

enum SomeChannel_MsgType

{

    SomeChannelStart = 5 << 12,

    SomeChannelPreStart = (5 << 12) – 1,

    Msg1,

    Msg2,

    Msg3,

    …

    MsgN,

    SomeChannelEnd

};

这是一个类型为5的Channel的消息ID声明,由于指明了最开始的两个值,所以后续枚举的值会依次递减,如此,只要维护Channel类型的唯一性,就可以维护所有消息ID的唯一性了(当然,前提是不能超过消息上限…)。但是,定义一个ID还不够,你还需要定义一个使用该消息ID的Message子类。这个步骤不但繁琐,最重要的,是违反了DIY原则,为了添加一个消息,你需要在两个地方开工干活,是可忍孰不可忍,于是Google祭出了宏这颗原子弹,需要定义消息,格式如下:

IPC_BEGIN_MESSAGES(PluginProcess, 3)

  IPC_MESSAGE_CONTROL2(PluginProcessMsg_CreateChannel,

                       int /* process_id */,

                       HANDLE /* renderer handle */)

  IPC_MESSAGE_CONTROL1(PluginProcessMsg_ShutdownResponse,

                       bool /* ok to shutdown */)

  IPC_MESSAGE_CONTROL1(PluginProcessMsg_PluginMessage,

                       std::vector<uint8> /* opaque data */)

  IPC_MESSAGE_CONTROL0(PluginProcessMsg_BrowserShutdown)

IPC_END_MESSAGES(PluginProcess)

这是Chrome中,定义PluginProcess消息的宏,我挖过来放在这了,如果你想添加一条消息,只需要添加一条类似与IPC_MESSAGE_CONTROL0东东即可,这说明它是一个控制消息,参数为0个。你基本上可以这样理解,IPC_BEGIN_MESSAGES就相当于完成了一个枚举开始的声明,然后中间的每一条,都会在枚举里面增加一个ID,并声明一个子类。这个一宏两吃,直逼北京烤鸭两吃的高超做法,可以参看ipc_message_macros.h,或者看下面一宏两吃的一个举例。。。

多次展开宏的技巧
这是Chrome中用到的一个技巧,定义一次宏,展开多段代码,我孤陋寡闻,第一次见,一个类似的例子,如下:
首先,定义一个macro.h,里面放置宏的定义:

#undef SUPER_MACRO

#if defined(FIRST_TIME)

#undef FIRST_TIME

#define SUPER_MACRO(label, type) \

enum IDs { \

label##__ID = 10 \

};

#elif defined(SECOND_TIME)

#undef SECOND_TIME

#define SUPER_MACRO(label, type) \

class TestClass \

{ \

public: \

enum {ID = label##__ID}; \

TestClass(type value) : _value(value) {} \

type _value; \

};

#endif

可以看到,这个头文件是可重入的,每一次先undef掉之前的定义,然后判断进行新的定义。然后,你可以创建一个use_macro.h文件,利用这个宏,定义具体内容:

#include “macros.h”

SUPER_MACRO(Test, int)

这个头文件在利用宏的部分不需要放到ifundef…define…这样的头文件保护中,目的就是为了可重入。在主函数中,你可以多次define + include,实现多次展开的目的:

#define FIRST_TIME

#include “use_macro.h”

#define SECOND_TIME

#include “use_macro.h”

#include <iostream>

int _tmain(int argc, _TCHAR* argv[])

{

TestClass t(5);

std::cout << TestClass::ID << std::endl;

std::cout << t._value << std::endl;

return 0;

}

这样,你就成功的实现,一次定义,生成多段代码了。。。

此外,当接收到消息后,你还需要处理消息。接收消息的函数,是IPC::Channel::Listener子类的OnMessageReceived函数。在这个函数中,会放置一坨的宏,这一套宏,一定能让你想起MFC的Message Map机制:

    IPC_BEGIN_MESSAGE_MAP_EX(RenderProcessHost, msg, msg_is_ok)

      IPC_MESSAGE_HANDLER(ViewHostMsg_PageContents, OnPageContents)

      IPC_MESSAGE_HANDLER(ViewHostMsg_UpdatedCacheStats,

                          OnUpdatedCacheStats)

      IPC_MESSAGE_UNHANDLED_ERROR()

    IPC_END_MESSAGE_MAP_EX()

这个东西很简单,展开后基本可以视为一个Switch循环,判断消息ID,然后将消息,传递给对应的函数。与MFC的Message Map比起来,做的事情少多了。。。

通过宏的手段,可以解决消息类声明和消息的分发问题,但是自动的序列化还不能支持(所谓自动的序列化,就是不论你是什么类型的参数,几个参数,都可以直接序列化,不需要另写代码…)。在C++这种语言中,所谓自动的序列化,自动的类型识别,自动的XXX,往往都是通过模板来实现的。这些所谓的自动化,其实就是通过事前的大量人肉劳作,和模板自动递推来实现的,如果说.Net或Java中的自动序列化是过山轨道,这就是那挑夫的骄子,虽然最后都是两腿不动到了山顶,这底下费得力气真是天壤之别啊。具体实现技巧,有兴趣的看看《STL源码剖析》,或者是《C++新思维》,或者Chrome中的ipc_message_utils.h,这要说清楚实在不是一两句的事情。。。

总之通过宏和模板,你可以很简单的声明一个消息,这个消息可以传入各式各样的参数(这里用到了夸张的修辞手法,其实,只要是模板实现的自动化,永远都是有限制的,在Chrome的模板实现中,参数数量不要超过5个,类型需要是基本类型、STL容器等,在不BT的场合,应该够用了…),你可以调用Channel、ChannelProxy、SyncChannel之类的Send方法,将消息发送给其他进程,并且,实现一个Listener类,用Message Map来分发消息给对应的处理函数。如此,整个IPC体系搭建完成。。。

苦力的宏和模板
不论是宏还是模板,为了实现这套机制,都需要写大量的类似代码,比如为了支持0~N个参数的Control消息,你就需要写N+1个类似的宏;为了支持各种基础数据结构的序列化,你就需要写上十来个类似的Write函数和Traits。。。
之所以做如此苦力的活,都是为了用这些东西的人能够尽可能的简单方便,符合DIY原则。规约到之前说的设计者的职责上来,这是一个典型的苦了我一个幸福千万人的负责任的行为。在Chrome中,如此的代码随处可见,光Tuple那一套拳法,我现在就看到了使了不下三次(我曾经做过一套,直接吐血…),如此兢兢业业,真是可歌可泣啊。。。

【三】 Chrome的进程模型

1. 基本的进程结构

Chrome是一个多进程的架构,不过所有的进程都会由老大,Browser进程来管理,走的是集中化管理的路子。在Browser进程中,有xxxProcessHost,每一个host,都对应着一个Process,比如RenderProcessHost对应着RenderProcess,PluginProcessHost对应着PluginProcess,有多少个host的实例,就有多少个进程在运行。。。

这是一个比较典型的代理模式,Browser对Host的操作,都会被Host封装成IPC消息,传递给对应的Process来处理,对于大部分上层的类,也就隔离了多进程细节。。。

2. Render进程

先不扯Plugin的进程,只考虑Render进程。前面说了,一个Process一个tab,只是广告用语,实际上,每一个web页面内容(包括在tab中的和在弹出窗口中的…),在Chrome中,用RenderView表示一个web页面,每一个RenderView可以寄宿在任一一个RenderProcess中,它只是依托RenderProcess帮助它进行通信。每一个RenderProcess进程都可以有1到N个RenderView实例。。。

Chrome支持不同的进程模型,可以一个tab一个进程,一个site instance一个进程等等。但基本模式都是一致的,当需要创建一个新的RenderView的时候,Chrome会尝试进行选择或者是创建进程。比如,在one site one process的模式下,如果存在此site,就会选择一个已有的RenderProcessHost,让它管理这个新的RenderView,否则,会创建一个RenderProcessHost(同时也就创建了一个Process),把RenderView交给它。。。

在默认的one site instance one process的模式中,Chrome会为每个新的site instance创建一个进程(从一个页面链开来的页面,属于同一个site instance),但,Render进程总数是有个上限的。这个上限,根据内存大小的不同而异,比如,在我的机器上(2G内存),最多可以容纳20个Render进程,当达到这个上限后,你再开新的网站,Chrome会随机为你选择一个已有的进程,把这个网站对应的RenderView给扔进去。。。

每一次你新输入一个站点信息,在默认模式下,都必然导致一个进程的诞生,很可能,伴随着另一个进程的死亡(如果这个进程没有其他承载的RenderView的话,他就自然死亡了,RenderView的个数,就相当于这个进程的引用计数…)。比如,你打开一个新标签页的时候,系统为你创造了一个进程来承载这个新标签页,你输入www.baidu.com,于是新标签页进程死亡,承载www.baidu.com的进程诞生。你用baidu搜索了一下,毫无疑问,你基本对它的搜索结果很失望,于是你重新输入www.google.com,老的承载baidu的进程死亡,承载google的进程被构建出来。这时候你想回退到之前baidu的搜索结果,乐呵乐呵的话,一个新的承载baidu的进程被创造,之前Google的进程死亡。同样,你再次点击前进,又来到Google搜索结果的时候,一个新的进程有取代老的进程出现了。。。

以上现象,你都可以自己来检验,通过观察about:memory页面的信息,你可以了解整个过程(记得每做一步,需要刷新一下about:memory页面)。我唧唧歪歪说了半天,其实想表达的是,Chrome并没有像我YY的一样做啥进程池之类的特殊机制,而是简单的履行有就创建、没有就销毁的策略。我并不知道有没有啥很有效的多进程模型,这方面一点都没玩过,猜测Chrome之所以采取这样的策略,是经过琢磨的,觉得进程生死的代价可以承受,比较可行。。。

3. 进程开销控制算法

说开销无外乎两方面的内容,一为时间,二则空间。Chrome没有在进程创建和销毁上做功夫,但是当进程运行起来后,还是做了一些工作的。。。

节约工作首先从CPU耗时上做起,优先级越高的进程中的线程,越容易被调度,从而耗费CPU时间,于是,当一个页面不再直接面对用户的时候,Chrome会将它的进程优先级切到Below Normal的级别,反之,则切回Normal级别。通过这个步骤,小节约了一把时间。。。

进程的优先级
在windows中,进程是有优先级的,当然,这个优先级不是真实的调度优先级,而是该进程中,线程优先级计算的基准。在《Windows via C/C++》(也就是《windows核心编程》的第五版)中,有一张详细的表,表述了线程优先级和进程优先级的具体对应关系,感觉设计的很不错,我就不罚抄了,有兴趣的自行动手翻书。。。

当然这只是一道开胃小菜,满汉全席是控制进程的工作集大小,以达到降低进程实际内存消耗的目的(Chrome为了体现它对内存的节约,用了“更为精确”的内存消耗计算方法…)。提到这一点,Chrome颇为自豪,在文档中,顺着道把单进程的模式鄙视了一下,基本意思是:在多进程的模式下,各个页面实际占用的内存数量,更容易被控制,而在单进程的模式下,几乎是不能作出控制的,所以,很多时候,多进程模式耗费的内存,是会小于多线程模式的。这个说法靠不靠谱,大家心里都有谱,就不多说了。。。

具体说来,Chrome对进程工作集的控制算法还是比较简单的。首先,在进程启动的时候,需要指明进程工作的内存环境,是高内存,低内存,还是中等内存,默认模式下,是中等内存(我以为Chrome会动态计算的,没想到竟然是启动时指定…)。在高内存模式,不存在对工作集的调整,使劲用就完事了;在低内存的模式下,调整也很简单,一旦一个进程不再有页面面对观众了,尝试释放其所有工作集。相比来说,中等模式下,算法相对复杂一些,当一个进程从直接面对观众,沦落到切换到后台的悲惨命运,其工作集会缩减,算法为: TargetWorkingSetSize = (LastWorkingSet/2 + CurrentWorkingSet) /2;其中,TargetWorkingSetSize指的是预期降到的工作集大小,CurrentWorkingSet指的是进程当前的工作集(在Chrome中,工作集的大小,包含私有的和可共享的两部分内存,而不包含已经共享了的内存空间…),LastWorkingSet,等于上一次的CurrentWorkingSet除以DampingFactor,默认的DampingFactor为2。而反之,当一个进程从幕后走向台前,它的工作集会被放大为 LastWorkingSet * DampingFactor * 2,了解过LastWorkingSet的含义,你已经知道,这就是将工作集放大两倍的另类版写法。。。

Chrome的Render进程工作集调整,除了发生在tab切换(或新页面建立)的时候,还会发生在整个Chrome的idle事件触发后。Chrome有个计时器,统计Chrome空闲的时长,当时长超过30s后(此工作会反复进行…),Chrome会做一系列工作,其中就包括,调整进程的工作集。被调整的进程,不仅仅是Render进程,还包括Plugin进程和Browser进程,换句话描述,就是所有Chrome进程。。。

这个算法导致一个很悲凉的状况,当你去蹲了个厕所回到电脑前,切换了一个Chrome页面,你发现页面一片惨白,一阵硬盘的骚动过后,好不容易恢复了原貌。如果再切,相同的事情又会发生,孜孜不倦,直到你切过每一个进程。这个惨案发生的主要原因,就是由于所有Chrome进程的工作集都被释放了,页面的重载和Render需要不少的一坨时间,这就大大影响了用户感受,毕竟,总看到惨白的画面,容易产生不好的情绪。强烈感觉这个不算一个很出色的策略,应该有一个工作集切换的底限,或者是在Chrome从idle中被激活的时候,偷偷摸摸的统一扩大工作集,发几个事件刺激一下,把该加载的东西加载起来。。。

整体感觉,Chrome对进程开销的控制,并不像想象中的有非常精妙绝伦的策略在里面,通过工作集这总手段并不算华丽,而且,如果想很好的工作的话,有一个非常非常重要的前提,就是被切换的页面,很少再被继续浏览。个人觉得这个假设并不是十分可靠,这就使得在某些情况下,产生非常不好的用户体验,也许Chrome需要进一步在这个地方琢磨点方法的。。。

【四】Chrome的UI绘制

1. Chrome的窗口控件

Chrome提供了自己的一个UI控件库,相关文档可以参见这里。用Chrome自己的话来说,我觉得市面上的七荤八素的图形控件库都不好用,于是自己倒腾倒腾实现了一套。。。

广告虽如此说,不过,Chrome的图形控件结构,我还未发现有啥非常非常特别的地方。Chrome的窗口、按钮、菜单之类的控件,都直接或间接派生自View,这个是控件基类。Chrome的View具有树形结构,其内部有一个子View数组,由此构成一个控件常用的组合模式。。。

有一个比较特殊的View子类,叫做RootView,顾名思义,它是整个View控件树的根,在Chrome中,一个正确的树形的控件结构,必须由RootView作为根。之所以要这样设计,是因为RootView有一个比较特殊的功能,那就是分发消息。。。

我们知道,一般的Windows控件,都有一个HWND,用与占据一块屏幕,捕获系统消息。Chrome中的View只是保存控件相关信息和绘制控件,里面没有HWND句柄,因此不能够捕获系统消息。在Chrome中,完整的控件架构是这样的,首先需要有一个ViewContainer,它里面包含一个RootView。ViewContainer是一个抽象类,在Window中的一个子类是HWNDViewContainer,同时,HWNDViewContainer还是MessageLoopForUI::Observer的子类。如果你看过本文第一部分描述的线程通信的内容的话,你就应该还记得,Observer是用于监听本线程内系统消息的东东。。。

当有系统消息进入此线程消息循环后,HWNDViewContainer会监听到这个情况,如果和View相关的消息,它就会调用RootView的相关方法,传递给控件。在RootView的内部,会遍历整个控件树上的控件,将消息传递给各个控件。当然,有的消息是可以独占的,比如鼠标移动发送在某个View所管辖的范围内,它会告知RootView(通过方法的返回值…),这个消息我要了,那么RootView会停止遍历。。。

在设计的时候,View对消息的处理,采取的是大而全的接口模式。就是说在View内部,提供了所有可能的消息处理接口,并提供了默认实现,所有子类只需要覆盖自己需要的消息处理函数即可。如果对MFC的消息映射有了解的话,可以知道两者的区别。MFC在设计的时候,觉得无法提供大而全的接口,因为消息总类实在太多,而且还是可扩展的,于是就有了消息映射着一套繁琐的宏。但Chrome的图形框架,显然没有做一个通用的Framework的打算,因此,可以采用这样的策略,使得子类的派生变得简单而自然。。。

每一个View的子类控件,比如Button之类的,会存储一些数据,根据消息做一些行为,并且绘制出自己。在Chrome中,画图的东西是ChromeCanvas这个类,在其内部,通过Skia和GDI实现绘制。Skia是Android团队开发的一个跨平台的图形引擎,在Chrome中负责除了文字之外,所有内容的绘制;而文字绘制的重担,在Windows中交到了GDI的手上。这样的设计会给跨平台带来一些困难,估计是由Skia实现文本绘制会比较繁琐,才会带出如此一个设计的模式。。。

另外一个历史遗留产物,就是在Windows下的图形控件,还有一些是原生的,就是说带有HWND那种传统的控件,这是Chrome身上不多的赶工期的痕迹,随着时间的宽裕,这样的原生控件会被淘汰进历史的垃圾箱,而全部变为从View派生的控件。。。

其实,对于Chrome这套控件架构我还没算摸得很熟悉,估计等到做一次插件之后会了解的更透彻,因此,只说了点皮毛,聊表心意。。。

2. Chrome的页面加载和绘制

上面这些UI控件,都是用在窗口上的(比如浏览器的外框,菜单,对话框之类的…)。我们在浏览器中看到的大部分内容,是网页页面。页面的绘制(绘制,就是把一个HTML文件变成一个活灵活现的页面展示的过程…),只有一半轮子是Chrome自己做的,还有一部分来自于WebKit,这个Apple打造的Web渲染器。。。

之所以说是一半轮子来源于WebKit,是因为WebKit本身包含两部分主要内容,一部分是做Html渲染的,另一部分是做JavaScript解析的。在Chrome中,只有Html的渲染采用了WebKit的代码,而在JavaScript上,重新搭建了一个NB哄哄的V8引擎。目标是,用WebKit + V8的强强联手,打造一款上网冲浪的法拉利,从效果来看,还着实做的不错。。。

不过,虽说Chrome和WebKit都是开源的,并联手工作。但是,Chrome还是刻意的和WebKit保持了距离,为其始乱终弃埋下了伏笔。Chrome在WebKit上封装了一层,称为WebKit Glue。Glue层中,大部分类型的结构和接口都和WebKit类似,Chrome中依托WebKit的组件,都只是调用WebKit Glue层的接口,而不是直接调用WebKit中的类型。按照Chrome自己文档中的话来说,就是,虽然我们再用WebKit实现页面的渲染,但通过这个设计(加一个间接层…)已经从某种程度大大降低了与WebKit的耦合,使得可以很容易将WebKit换成某个未来可能出现的更好的渲染引擎。。。

重用
在《梦断代码》中,有一坨调侃重用的文字。他觉着软件重用的困难一方面来自于场景本身很多变,很难设计出一套包罗万象的东西;另一方面来自于人,程序员总是瞅着别人写的代码不顺眼,总喜欢自己写一套。。。
于是,解决重用这个问题也就只有两种,写最NB人见人服无所不能的代码,或者是有很多很多NB代码共君任选。Google无疑在这两个方面做得都不错,Map/Reduce,Big Table之类的一套东西,强大到可以适合太多的场景,大大简化了N多上层应用的开发。而对开源的利用使用,使得其可以随意挑一个巨人站到他肩膀上跳舞,每看到这种场景,MS估计都会气得拍着胸口吐血。。。
Google本身在服务端的基础底层,有很深积累,随着Chrome,Android等等客户端应用的开发,客户端的积累也逐步提升,也许,拥抱开源才是MS的正道?。。。

当你键入一个Url并敲下回车后,Chrome会在Browser进程中下载Url对应的页面资源(包括Web页面和Cookie),而不是直接将Url发送给Render进程让它们自行下载(你会越来越发现,Render进程绝对是100%的名符其实,除了绘制,几乎啥多余的事情都不会干的…)。与各个Render进程各自为站,各自管好自己所需的资源相比,这种策略仿佛会增加大量的进程间通信。之所以采用,按照这篇文档的解释,主要有三个优点,一个是避免子进程与网络通信,从而将网络通信的权限牢牢握在主进程手中,Render进程能力弱了,想造反干坏事的可能性就降低了(可以更好控制各个Render进程的权限…);另一个是有利于Cookie等持久化资源在不同页面中的共享,否则在不同Render进程中传递Cookie这样的事情,做起来更麻烦;还有一点很重要的,是可以控制与网络建立HTTP连接的数量,以Browser为代表与网络各方进行通信,各种优化策略都比较好开展(比如池化)。。。

当然,在Browser进程中进行统一的资源管理,也就意味着不再方便用WebKit进行资源下载(WebKit当然有此能力,不过再次被Chrome抛弃了…),而是依托WinHTTP来做的。WinHTTP在接受数据的过程中,会不停的把数据和相关的消息通过IPC,发送给负责绘制此页面的Render进程中对应的RenderView。在这里,路由消息中的那个ID值起了关键的作用,系统依照此ID,能够准确的将相关的消息发送到相关的View头上,这玩意发错了地方还真不是和有人把钱错到你账户上一样,因为错收的进程基本上无福消受这个意外来客,轻者页面显示混乱,重者消化不良直接噎死。。。

RenderView接收到页面信息,会一边绘制一边等待更多的资源到来,在用户看来,所请求的页面正在一点一点显示出来。当然,如果是一个通知传输开始、传输结束这样的消息,通过序列化到消息参数里面,经由IPC发过来,代价还是可以承受的,但是,想资源内容这样大段大段的字节流,如果通过消息发过来,浪费两边进程大量空间和时间,就不合适了。于是这里用到了共享内存。Browser进程将下载到的资源写到共享内存中,并将共享内存的句柄和共享区域的大小序列化在消息中发送给Render进程。Render进程拿到这个句柄,就可以通过它访问到共享内存相关的区域,读取信息并进行绘制。通过这样的方式,即享用到了统一资源管理的优点,由避免了很高的进程通信开销,左右逢源,好不快活。。。

3. Chrome页面的消息响应

Render进程是一个娇生惯养的进程,这一点从上面一段已经可以看出来了。它自己的资源它自己都不下载,而是由Browser进程来帮忙。不过Render进程也许比你想象的还要懒惰一些,它不但不自己下载资源,甚至,连自己的系统消息都不接收。。。

Render进程中不包含HWND,当你鼠标在页面上划来划去,点上点下,这些消息其实都发到了Browser进程,它们拥有页面呈现部分的HWND。Browser会将这些消息转手通过IPC发送给对应的Render进程中的RenderView,很多时候WebKit会处理此类消息,当它发现出现了某种值得告诉Browser进程的事情,它会组个报回赠给Browser进程。举个例子,你打开一个页面,然后拿鼠标在页面上乱晃。Browser这时候就像一个碎嘴大婶,不厌其烦的告诉Render进程,“鼠标动了,鼠标动了”。如果Render对这个信息无所谓,就会很无聊的应答着:“哦,哦”(发送一个回包…)。但是,当鼠标划过链接的时候,矜持的Render进程坐不住了,会大声告诉Browser进程:“换鼠标,换鼠标~~”,Browser听到后,会将鼠标从箭头状换成手指状,然后继续以上过程。。。

比较麻烦的是Paint消息,重新绘制页面是一个太频繁发生的事情,不可能重绘一次就序列化一坨字节流过去。于是策略也很清楚了,就是依然用共享内存读写,用消息发句柄。在Render进程中,会有一个共享内存池(默认值为2…),以size为key,以共享内存为值,简单的先入先出淘汰算法,利用局部性的特征,避免反复的创建和销毁共享内存(这和资源传递不一样,因为资源传递可以开一块固定大小的共享内存…)。Render进程从共享内存池中拿起一块(二维字节数组…),就好像拿着一块屏幕似的,拼了命往上绘制,为了让Render安心觉着有成就感,Browser会偷偷帮Render把这些内容绘制到屏幕上,造成Render进程直接绘制屏幕的假象。这可就苦了屏幕取词的工具们,因为在HWND上压根就没啥字符信息,全部就是一坨图像而已,啥也取不着。于是Google金山词霸,网易有道词霸各自发挥智慧,另辟蹊径,也算是都利用Chrome做了一把广告。。。

为什么不让Render进程自己拥有HWND,自己管理自己的消息,既快捷又便利。在Chrome的官方Blog上,有一篇解释的文章,基本上是这个意思,速度是必须快的发指的,但是为了用户响应,放弃一些速度是必要的,毕竟,没有人喜欢总假死的浏览器。在Browser进程中,基本上是杜绝任何同步Render进程的工作,所有操作都是异步完成。因为Render进程是不靠谱的,随时可能牺牲掉,同步它们往往导致主进程停止响应,从而导致整个浏览器停下来甚至挂掉,这个代价是不可以容忍的。但是,Windows有一个恶习,喜欢往整个HWND继承体系中发送同步消息(我不是很清楚这个状况,有人能解释么?…),这时候,如果HWND在Render进程中,就务必会导致主进程与Render进程的同步,Chrome无法控制Windows,于是,它们只能够控制Render,把它们的HWND搬到主进程中,避免同步操作,换取用户响应的速度。。。

4. 结论

整个Chrome的UI架构,就是一个权责分配的问题。可以把Browser进程看成是一个类似于朱元璋般的勤劳皇帝(详见《明朝那些事 一》…),把大多数的权利都牢牢把握在手中,这样,虽然Browser很操劳,但是整体上的协调和同步,都进行的非常顺畅。Render进程就是皇帝手下的傀儡宰相们,只负责自己的一亩三分地,听从皇帝的调配即可。这这样的环境下,Render进程的生死变得无足轻重,Render的死亡,只是少了一个绘制页面的工具而已,其他一切如故。通过控制权力,换取天下太平,这招在coding界,同样是一个不错的策略,但是,唯一的意外来自于Plugin。按照规范,Chrome的Plugin是可以创立窗口的(HWND),这必然导致同步问题,Chrome没有办法通过控制权力的方式解决这个问题,只能想些别的亡羊补牢的招来搞定。。。

【五】 Chrome的插件模型

1. NPAPI

为了紧密的与各个开源浏览器团结起来,共同抗击IE的垄断,Chrome的插件,也遵循了NPAPI(Netscape Plugin Application Programming Interface)标准,支持这个标准的浏览器需要实现一组规定的API供插件调用,这组API形如NPN_XXX,比如NPN_GetURL,插件可以利用这些API进行二次开发。而NPAPI插件以一个Dll之类的作为物理载体(windows下dll,linux下是so…)进行提供,里面同样也实现了一组规定的API。形式包括NP_XXXNPP_XXX,NP_XXX是系统需要默认调用的方法,用于认知这个插件,比如NP_Initialize, 而NPP_XXX是用于插件完成一些实际功能,比如NPP_New。。。

所有的插件dll都需要放置在指定目录下(根据操作系统的不同而不同…),每个插件可以处理一种或多种MIME格式的数据,比如application/pdf,说明该插件可以处理pdf相关的文档。在Chrome中键入about:plugins,可以查看当前Chrome中具有的插件信息。。。

NPAPI是一个很经典的插件方案,用dll进行注入,用协定的API进行通信,用字符串描述插件能力。插件宿主(在这里就是浏览器…),会根据能力描述,动态加载插件,并负责插件调用的流程和生命周期管理。而插件中,负责真实逻辑的处理,并可以构造UI与用户交流。以此类方式实现的插件系统,往往是处理的逻辑比较固定适用范围一般(用API写死了逻辑…),但可扩展性不错(用字符串描述能力,可无限扩展…)。。。

在Chrome中nphostapi.h中,定义了所有NPAPI相关的函数指针和结构,这个文件放置在glue目录下,如果看过前面碰过的文章就知道,在WebKit内肯定也有一套相同的东西;在npapi.h/.cc中,提供了Chrome浏览器端的NPN_XXX系列函数的实现;每一个插件物理实例,用PluginLib类来表示,而每一个插件的逻辑实例,用PluginInstance类来表示。这个概念牵强附会的可以用windows中的句柄来类比,当你想操作一个内核对象,你需要获得一个内核对象的句柄,每个进程中的句柄肯定不相同,但后面的内核对象却是同一个,内核对象的生命周期通过句柄的计数来控制,有人用则或,无人用则死(当然这个类比相当的牵强,主要是想说明引用计数和逻辑与物理的关系,但一个关键性的区别在于,PluginLib与PluginInstance都是在一个进程内的,不能跨越进程边界…)。在Chrome中,PluginLib负责加载和销毁一个dll,拿到所有导出函数的函数指针,PluginInstance对这些东西进行了封装,可以更好的来调用。。。

关于NPAPI的更多细节,Chrome并没有提供任何文档,但是,各个先驱的浏览器们都提供了大量丰富的文档。比如,你可以到这里,查看firefox中的NPAPI文档,基本通用。。。

2. Chrome的多进程插件模型

Chrome的插件模型,与早先的浏览器的最大不同,是它采用了多进程的方式,每一个插件,都有一个单独的进程来承载(Shift + Esc打开Chrome进程管理器,可以看到现在已经加载的插件进程…)。当WebKit进行页面渲染的时候,发现了未知的MIME类型数据,它会告知给Browser进程,召唤它提供一个插件来解析。如果该插件还未加载,Browser会在指定目录中搜寻出具有此实力的插件(如果没有此类人才只能作罢…),并为它创建一个进程,让它负责所有的该插件相关的任务,然后建立起一个IPC通路,与它“保持通话”。这套流程一定不会太陌生,因为它与Render进程的创建大同小异换汤不换药。。。

Plugin进程与Render进程最大的区别在于,Render需要与Browser进程大量通信,因为它的HWND归Browser老大掌管着,相关所有内容都需要通信完成。但Plugin不需要与Browser频繁联系,它大部分的通信都是与Render进程发生的。如果Plugin与Render之间的通信,还需要走Browser中转一下,这就显得有些脱裤子放屁了,虽然Browser是大头,但不是冤大头,它不会干这种吃力不讨好的事情。他只是做了一回Render与Plugin间的媒婆而已。当Plugin与Browser建立好了IPC通路后,它会让Render建立一个新IPC通路,用以与Plugin通信,IPC的有名管道名,经由Browser通知给Plugin。完成名字协商后,Render与Plugin的通信关系就建立好了,它们之间就可以直接进行通信了。。。

整个通信模式,可以看这里。这是一个很标准的代理模式的应用,稍有了解的都可以跳过我后面会做的一段罗嗦的描述,一看官方文档中的图便能知晓。在Render进程端,WebPluginImpl是WebPlugin的一个子类,WebPlugin是供Webkit进行调用的一个接口,利用依赖倒置,实现了扩展。在Plugin进程端,实现了一个WebPluginDelegateImpl类,该类会调用PluginInstance的相关接口实现真实的插件功能。这样的话,只需要WebPluginImpl调用WebPluginDelegateImpl中的相应方法,就可以实现功能。但问题是WebPluginImpl与WebPluginDelegateImpl天各一方各处于一个进程,很显然,这里需要一个代理模式。这里沿用了COM的架构,Delegate + Stub + Proxy。WebPluginImpl调用代理WebPluginDelegateProxy,该代理会将调用转换成消息,通过IPC发送给Plugin进程,在Plugin端,通过WebPluginDelegateStub监听消息,并转换成对真实WebPluginDelegateImpl的调用,从而完成了跨进程的一个调用,反之亦然。。。

3. Chrome的可扩展性

总所周知,firefox通过三种方式进行自定义,插件、扩展和皮肤。其中,插件是使得浏览器能用,不会出现一大块一大块的无法显示的区域;扩展是使得浏览器好用,可以简单方便的进行功能的定制和个性化配置;皮肤是帮助浏览器变得好看,毕竟罗卜白菜,给有所爱。。。

与之对比,来看Chrome。Chrome有了插件,有了皮肤,但是没有扩展。这就意味着,你很难为Chrome定制一些特色的功能。目前,所有对Chrome的功能扩展,都是通过书签抑或是修改内核来实现的。前者能力太弱,后者开发起来太麻烦,容易出错不提,还必须要与时俱进,跟上版本的变化,并且还不能自由的选择或关闭。因此,这都不是长远之计,Chrome提供一套类似于firefox的扩展机制,也许才是正道。据传说,Chrome团队正在琢磨这件事,不知道最终会出来个怎么样的结果,是尽力接近firefox降低移植成本,还是另立门户特立独行,我想可以拭目以待一把。。。

在多进程模式下,Chrome的插件还有一个问题,前面提到过,就是关于UI控件的。由于NPAPI的标准,是允许插件创建HWND窗口的,这就使得当Plugin繁忙,且Browser进程发起HWND的同步的时候,主进程被挂起,这个浏览器停滞。在Render进程中,解决这个问题的思路是控制权限,不然Render创建HWND,到了Plugin中,这招不能使用,只能够使用另一招,就是监管。不停的检查Plugin是否太繁忙,无法响应,一旦发现,立即杀死该Plugin及其所处的页面。这就好比你想解决奶中有三氯氰胺的问题,要么控制奶源,不从奶站购买全部用自家的,要么加强监管,提高检查力度防止隐患。两种策略的优缺点一眼便知,依照不同环境采取不同策略即可。。。

总体说来,Chrome的可扩展性着实一般,不过Chrome还处于Beta中,我们可以继续期待。。。

最后编辑:
作者:wy182000
这个作者貌似有点懒,什么都没有留下。

留下一个回复